Esophageal Cancer Screening
Esophageal cancer:
One of most lethal cancers in US

16,980
new cases per year

15,590
deaths per year

Urgency to detect esophageal cancer before symptoms develop

98 out of 100 survive 5 years if diagnosed asymptomatic in Stage I

<15 out of 100 survive 5 years if diagnosed after symptoms in Stages I, II, III or IV

Source: SEER 18 2004-2010

Pech et al. Gastroenterology 2014;14:652
Collaborating to detect pancreatic cancer early

- Leveraging long-standing relationship and building on success of Cologuard®
- Significant intellectual property portfolio
- Proprietary know-how and biospecimens
- World leadership in cancer care through early detection
Pancreatic Cancer Screening

David A. Ahlquist, MD
Gastroenterologist, Gatton Professor of Digestive Diseases Research, Mayo Clinic
Opportunities for early detection of esophageal cancer

- Recognizable pre-malignant condition: Barrett’s esophagus
- Effective endoscopic treatment for Barrett’s esophagus and earliest stage esophageal cancer
- Molecular tools offer potential to improve effectiveness of early detection
What is Barrett’s esophagus?

- A premalignant change in lining of lower esophagus
- Linked to gastro-esophageal reflux (GERD), which occurs in 40% of general US population
- Broad prevalence*
 - General population: 3-15%
 - Patients with GERD: 8-25%
- Readily recognized by endoscopy

Progression from Barrett’s esophagus to cancer

- Histological progression
 - Long pre-symptomatic window
 - Barrett’s esophagus \(\rightarrow\) low grade dysplasia
 \(\rightarrow\) high grade dysplasia \(\rightarrow\) cancer

- Increased cancer risk with Barrett’s esophagus 11-50x

- Lifetime cancer risk with Barrett’s esophagus 5-20%

Barrett’s esophagus without dysplasia
Barrett’s esophagus with dysplasia (high grade)
Mucosal cancer
Current approaches for early detection face multiple challenges

<table>
<thead>
<tr>
<th></th>
<th>Barrett’s Esophagus Screening</th>
<th>Barrett’s Esophagus Dysplasia Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Endoscopy</td>
<td>Guideline recommended periodic surveillance in patients with BE (random biopsies)</td>
</tr>
<tr>
<td>Challenges</td>
<td>Poor adherence</td>
<td>50% miss rate for cancer and focal high grade dysplasia by conventional (every 2cm) random biopsies*</td>
</tr>
</tbody>
</table>

Barrett’s Esophagus

Random biopsies frequently miss focal dysplasia

- Focal dysplasia
- Random biopsies

Notes:

- Poor adherence
- 50% miss rate for cancer and focal high grade dysplasia by conventional (every 2cm) random biopsies
Our solution: A clinical application of esophageal brushing

- Evaluate and monitor Barrett’s esophagus
- Endoscopic brushing of Barrett’s segment
- More representative and accurate than random biopsies
- Assay of methylated DNA markers to determine presence of dysplasia or cancer
Using endoscopic brushing to detect Barrett’s esophagus-related dysplasia and cancer

• Addresses clinical need to increase sensitivity

• Potential to improve surveillance outcomes
 – Better cancer prevention by improved dysplasia detection
 – Reduced cancer mortality by improved early stage detection
 – Lower treatment-related morbidity as early detection allows endoscopic Rx

• Health economics are driven by enhanced detection over biopsy alone
Our approach to successful early detection in Barrett’s esophagus

- Identified and secured best-in-class markers
 - Whole methylome discovery
 - On tissue validation, best markers highly discriminant (AUC ~1)*
- Demonstrated feasibility
 - BE dysplasia and early-stage EAC detection from whole esophageal brushing
 - 3-marker panel: sensitivity 81% any dysplasia, 100% early EAC**
- Optimize marker combinations and assay methods
- Validate in clinical case-control study

Source: *Taylor et al. DDW 2015, **Iyer et al. DDW 2015
Mayo Clinic’s prospective esophageal brushing study

Primary Aim
Assess accuracy of methylated DNA markers in esophageal brushings to detect BE-related esophageal cancer and dysplasia

N=300
Normal esophagus (100)

BE without dysplasia (100)

BE with dysplasia: LG, HG, or mucosal EAC (100)

Biospecimens Collected
esophageal brushings, sponge-on-string
Effective endoscopic options to treat and prevent esophageal cancer

- Endoscopic curative removal of early cancer
 - Endoscopic mucosal resection

- Endoscopic ablation
 - Radio frequency
 - Cryotherapy

Source: Images courtesy of Mayo Foundation for Medical Education and Research
Opportunities for early detection in Barrett’s esophagus with new molecular tools

- Endoscopic brushing (near-term)
 - Dysplasia surveillance

- Sponge-on-string (longer-term)
 - Population screening
 - Early studies suggest feasibility*
 - Optimal markers and methods needed
 - Dysplasia surveillance
 - Early studies suggest feasibility
 - Optimal markers and methods needed

Source: Iyer et al. DDW 2014
Paving the way to esophageal cancer screening in patients

• Initiating clinical trial with Mayo Clinic
• Evaluating regulatory pathway
• Building powerful economic story for Medicare and commercial payers
US market opportunity for esophageal cancer early detection

<table>
<thead>
<tr>
<th></th>
<th>Total Number of Patients in Addressable Population Per Year</th>
<th>US Market Opportunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysplasia surveillance
(every 2 years for diagnosed Barrett’s patients)</td>
<td>1M+</td>
<td>$500M+</td>
</tr>
</tbody>
</table>