Pancreatic Cancer Screening
Pancreatic cancer: One of America’s most lethal cancers

48,960 new cases per year

40,560 deaths per year

Collaborating to detect pancreatic cancer early

- Leveraging long-standing relationship and building on success of Cologuard®
- Significant intellectual property portfolio
- Proprietary know-how and biospecimens
- World leadership in cancer care through early detection
Pancreatic Cancer Screening

David A. Ahlquist, MD
Gastroenterologist, Gatton Professor of Digestive Diseases Research, Mayo Clinic
US mortality from pancreatic cancer rapidly increasing

- Current: 4th leading cause of cancer deaths
- 2020: Increases by 70% (from 2010 levels) to become 2nd leading cause of cancer deaths

Two target lesions for early detection

- Earliest stage pancreatic cancer
 - Pre-symptomatic, Stage I
 - Challenges
 - No effective population screening tool
 - May appear as small nodules or cysts on imaging
 - Current tests inaccurate and potentially dangerous

- Pancreatic precancers
 - Cystic lesions
 - Challenges
 - Most incidentally found
 - Most do not progress
 - Unclear diagnosis and treatment management
Urgency to detect pancreatic cancer in earliest stage

3 out of 4 survive 5 years if asymptomatic with Stage I

<5 out of 100 survive 5 years if diagnosed with Stages II, III or IV

Source: SEER 18 2004-2010
Challenges with current diagnostic approach

- >600,000 incidental pancreatic lesions in US per year
 - 5-15% of all abdominal CT or MRI scans
- Limited accuracy of endoscopy and FNA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass/nodule</td>
<td>50-75%</td>
</tr>
<tr>
<td>Cyst</td>
<td>30%</td>
</tr>
</tbody>
</table>

Fine Needle Aspirate (FNA)

Image courtesy of The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
Translating diagnostic challenges into opportunities

<table>
<thead>
<tr>
<th>Issues</th>
<th>Current Approach</th>
<th>Future Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>Suboptimal (results in under/over Rx)</td>
<td>Potentially High</td>
</tr>
<tr>
<td>Morbidity</td>
<td><5%</td>
<td><1%</td>
</tr>
<tr>
<td>Endoscopic ultrasound facility needed</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Special training</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Requires anesthesiologist</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Collecting pancreatic juice during endoscopy

- Pancreatic juice easily collected as part of a routine endoscopy
 - Secretin I.V. stimulates immediate pancreatic juice outflow
 - Juice collected from duodenum through endoscope
- Avoids
 - Risks with biopsy/FNA
 - Anesthetist coverage
 - Complex endoscopy (endoscopic ultrasound)
Our approach to detection with pancreatic juice

- Identified and secured best-in-class markers*
 - Whole methylome discovery
 - Comprehensive tissue validation
- Established feasibility*
 - Best individual meth DNA markers highly discriminant in pancreatic juice (e.g., CD1D)
- Optimized marker combinations and methods
 - Best 4-marker combination

- Validate performance in well-designed clinical case-control study

Sources: *Kisiel et al. Clin Cancer Res 2015
PMID:26023084.DOI:10.1158/1078-0432.CCR-14-2469
Molecular pancreatic juice testing

Indication: Diagnostic evaluation and monitoring of *pancreatic lesions*

Action:
- **+** Surgery, treatment, palliative care, observation
- **-** Monitor

- Cysts
- Small solid nodules
- Large masses
Mayo Clinic 3-site prospective study underway

• Primary aim
 – Assess accuracy of methylated DNA markers in pancreatic juice to detect cancer and high-grade dysplasia

N=300
Pancreatic cancer cases (100)
Pancreatic cysts (100)
Normal controls (100)

• Biospecimens collected: pancreatic juice, cyst fluid, stool and blood
Expanding opportunities for new molecular tools

- Evaluation of nodules/cysts (near-term)
 - Pancreatic juice
- Population cancer screening (longer-term)
 - Stool
 - Early studies suggest feasibility\(^1\)
 - Optimal markers & methods needed
 - Blood
 - 83% detection accuracy (combined stages) in pilot study using plasma assay of meth DNA markers, reported\(^2\)
 - Optimal markers and methods needed

Sources: *Kisiel et al. Cancer 2012;118:2623
** Kisiel et al. AACR 2015
Goals of molecular testing in pancreatic juice

- Improved Accuracy
- Early Detection
- Reduced Procedures
- LDT Opportunity
US market opportunity to detect pancreatic cancer

<table>
<thead>
<tr>
<th># of Patients with Cysts that need Monitoring</th>
<th>US Market Opportunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosing pancreatic cysts for high-grade</td>
<td>550-650K</td>
</tr>
<tr>
<td></td>
<td>$500M+</td>
</tr>
</tbody>
</table>